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A Study of Lennard�Jones Equivalent Analytical
Relationships for Modeling Viscosities
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An analytical representation of the viscosity�density�temperature relationship of
the Lennard�Jones (LJ) fluid, over wide ranges of temperature and density,
is critically assessed and combined with an LJ pressure�density�temperature
equation of state to allow LJ viscosity calculations at a given temperature and
pressure. Both LJ equivalent analytical relationships (EARs) are accurate. The
potential of using an LJ-based model to represent the viscosities of real fluids
is evaluated in two steps. First, the qualitative trends generated by the two
combined LJ EARs are studied. Second, viscosity predictions for real, relatively
simple, fluids are performed. For these, it is assumed that a real fluid behaves
as an LJ fluid having a critical temperature Tc and a critical pressure Pc exactly
matching the real-fluid experimental values of Tc and Pc . Such an assumption
is equivalent to supposing that real fluids behave as LJ fluids with effective
intermolecular potential parameters consistent with the experimental critical
coordinates. The viscosity predictions are based only on molecular weight, Tc ,
and Pc . The quantitative evaluation is relative to a database of 30 relatively
simple compounds including 4 noble gases and the olefinic and aliphatic
straight-chain hydrocarbons through 8 carbon atoms. Conditions for the
evaluation ranged from 0.6 to 3 for reduced temperatures and from 0 to 3 for
LJ reduced densities. The average error is usually less than 100 for vapor and
supercritical viscosity and usually less than 250 for liquid viscosity. In its
present form, the methodology is actually a corresponding-states model where
the reference fluid is an LJ fluid.

KEY WORDS: dense fluids; gases; Lennard�Jones; modeling; molecular theory;
viscosity.
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1. INTRODUCTION

Model fluids are imaginary substances that have a well-defined expression
for the intermolecular potential. The values of the properties of model fluids,
under given input conditions, are obtained through computer experiments
using methods such as molecular dynamics (MD) [1]. Once good-quality
computer simulation data are available for a chosen model fluid, over a
wide enough range of conditions, they can be summarized in the form of
equivalent analytical relationships (EARs). EARs are analytical functions
that, from the same input information used to run a computer experiment,
provide values for the model fluid properties which agree well with those
of the actual computer experiment.

Simulated data correspond to substances which obey strictly a
prescribed intermolecular potential model. Therefore, simulated data on
a chosen model fluid are conventionally used for studying fundamental
issues such as the extension of measurements to regions not accessible to
experiments or the correct form for mixing rules (e.g., Ref. 2). Real fluids
behave according to the complex intermolecular interactions of real
molecules, whatever their mathematical form may be, rather than accord-
ing to the relatively crude intermolecular potential forms of well-known
model fluids. In spite of this, simulated data or their corresponding EARs
have also been used as the basis for engineering models applicable to real
fluids. For instance, Sun and Teja [3] have modeled the vapor�liquid
equilibria of systems containing polar or elongated molecules using a
Lennard�Jones (LJ) equation of state (EOS) with temperature-dependent
effective LJ parameters. In this case, all the complex interactions taking
place between real nonspherical molecules, often with the presence of
polar or specific intermolecular forces, are lumped into a single pseudo-LJ
intermolecular potential. This approach is acceptable for engineering
calculations, and we adopt it in the present work. Sun and Teja [3]
applied their LJ EOS for mixtures using the van der Waals (VW) one-
fluid mixing rules. These researchers [3] found that their LJ+VW EOS
could be used to correlate as well as to extrapolate mixture data over
considerable ranges of temperature and pressure and also found, on the
other hand, that commonly used purely empirical EOS models were
inadequate when extrapolated. The systems studied [3] contained
molecules of considerable complexity (e.g., water, ethanol, methane,
n-decane), and the pure-compound LJ parameters were made temperature
dependent. Despite the non-LJ nature of the studied complex molecules,
Sun and Teja [3] concluded that the predictive power is higher for
LJ-based EOSs than for cubic EOSs. The most probable explanation for
these conclusions is that LJ EOSs acknowledge the existence of discrete
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molecules through forced agreement with results from molecular-level
computer experiments, rather than assuming that fluids have a continuous
nature. Results such as those of Sun and Teja [3] indicate that engineer-
ing models based on computer experiments have a greater potential than
purely empirical correlations to represent accurately the properties of real
fluids, as long as the chosen model fluid is realistic. A purely empirical
correlation is, on the other hand, a model that does not specify an inter-
molecular potential function (macroscopic approach) [4]. The techniques
of Ref. 3 show how the LJ fluid can encapsulate not only the behavior
of simple substances but also the behavior of complex real fluids, if
proper corrections are introduced.

To generate a model applicable to engineering calculations, the choice
of a suitable model fluid should be guided by the following requirements:
(a) ability to represent well the essential behavior of real fluids, (b)
availability of computer simulation data over wide ranges of pressure and
temperature to build proper EARs, and (c) relative simplicity of the inter-
molecular potential function. With respect to the first requirement, the
intermolecular potential function u and its derivatives with respect to
the intermolecular distance r should preferably be continuous functions
of r. The well-known LJ model fluid fulfills, in principle, all these pre-
requisites.

The physical property of focus in the present work is the Newtonian
shear viscosity. Our long-term goal is to develop a model applicable over
wide ranges of temperature and pressure, with special emphasis on the
dense region. However, the model should also provide reasonable
viscosity values for low-density fluids. Hence, a unified treatment of all
possible fluid phase states, such as liquid, vapor, and supercritical fluid, is
required. This is also a precondition for the description of asymmetric
mixtures. The model has to be based on molecular theory and should
take advantage of recent EARs and�or computer simulation data. Besides,
the computation time should be compatible with engineering needs. Hence,
a good balance between accuracy and simplicity should be reached. Addi-
tionally, the required experimental input information should be kept to a
minimum.

Toward these goals, the purpose of the present work is to evaluate the
potential of combining existing LJ EARs for representing the viscosities of
real fluids. We review the relevant literature and test the consistency among
previous works by different authors. In view of our objectives, some sim-
plifications are proposed. Afterward, the potential of the new modeling
approach is assessed by looking at the qualitative trends for viscosity over
wide ranges of temperature and pressure and by the quantitative com-
parison of predicted and experimental viscosities.
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2. THE LENNARD�JONES (LJ) FLUID

The expression for the LJ intermolecular potential is the following:

u(r)=4= _\_
r+

12

&\_
r+

6

& (1)

where r is the intermolecular distance, u is the potential energy, = is the
depth of the LJ potential well, and _ is the LJ separation distance at zero
energy.

The LJ reduced temperature T+, reduced pressure P+, reduced den-
sity \+, and reduced viscosity '+ are conventionally defined as follows:
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where k is the Boltzmann constant, T is the absolute temperature, P is the
absolute pressure, N is the number of molecules, V is the system volume,
NA is Avogadro's number, \ is the amount-of-substance density, ' is the
Newtonian shear viscosity, and m is the mass of one molecule. The variable
\+ is not necessarily limited to values less than unity.

Rowley and Painter (RP) [5] computed LJ shear viscosities under
171 conditions covering a wide range of density and temperature, using the
method of molecular dynamics. They fitted the following equivalent analyti-
cal relationship (EAR) to the simulation data, which makes it possible to
calculate viscosities analytically from the values of T+ and \+:
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where '+
0 is the LJ reduced viscosity limit at zero density. The values of the

coefficients bji and |i were provided in Ref. 5 except for two errors on
parameters b32 and |2 . Their proper values are b32=1067.97 and |2=
&2.0265 [16]. We identify this set of parameter values as the original RP
set of parameters bji and |i .

The RP viscosity equation of state, i.e., Eq. (6), has the temperature
range of application 0.8�T +�4. The range for \+ is from 0 to the mini-
mum between 1 and the density of the dense LJ fluid in equilibrium with
the LJ solid (\+

fluid, SFE). Throughout the present article any reference to
solid�fluid equilibrium (SFE) excludes the equilibrium between the solid
and a low-density vapor (i.e., the sublimation equilibrium is excluded).

Viscosity diverges at the critical point [6]. Equation (6) does not
account for the critical enhancement for viscosity that takes place in the
neighborhood of the critical point. In contrast with the case of thermal
conductivity, the critical enhancement in viscosity is small and becomes
important only within a narrow region around the critical point [6].
Watson et al. [7] presented a clear illustration of the critical enhancement
effect. They also argued in favor of the viscosity factorization of Eq. (6), as
opposed to an additive representation expressing the dense fluid viscosity
as the summation of the zero-density viscosity plus a residual term.

The usual engineering need is to calculate viscosities at a given tem-
perature and pressure. Hence, we need an LJ EAR, connecting the tem-
perature, the pressure, and the density, which could be combined with
Eq. (6). Kolafa and Nezbeda (KN) [8] proposed one such analytical EOS
for the LJ fluid: the PVE�hBH LJ EOS. This EOS is based on a perturbed
virial expansion with a theoretically defined temperature-dependent reference
hard-sphere term. The PVE�hBH LJ EOS is based on critically assessed
computer simulation data from several sources. The good quality of this LJ
EOS was confirmed by Mecke et al. [9].

The PVE�hBH LJ EOS is

z=
P+

\+T += fKN(\+, T +) (8)

where z is the compressibility factor and fKN is a function of \+ and T +

defined in Appendix A. The temperature range of application of Eq. (8) is
0.68�T +�10. The range for \+ is from 0 to the density of a dense LJ
fluid in equilibrium with an LJ solid (\+

fluid, SFE).
Kolafa and Nezbeda [8] built Eq. (8) without imposing constraints

related to the location of the critical point. Hence, the PVE�hBH EOS is
a classical LJ EOS. The critical coordinates corresponding to Eq. (8) are
the following [8]:
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T +
c =1.3396 (9)

P+
c =0.1405 (10)

\+
c =0.3108 (11)

zc=0.3375 (12)

It can be shown that, in spite of the noncubic nature of the PVE�hBH LJ
EOS, Eq. (8), the number of \+ values compatible with given physically
meaningful values of T + and P+ never exceeds three, as in the case of
semiempirical cubic EOSs (e.g., Ref. 10), as long as Eq. (8) is used within
its range of applicability. At subcritical temperatures, the number of \+

values compatible with a given P+ value can be quickly established using
the techniques of Ref. 11.

The availability of a procedure to compute \+
fluid, SFE is required to use

Eqs. (6) and (8) properly. Agrawal and Kofke [12] reported properties of
the LJ fluid at solid�fluid coexistence from the LJ triple-point temperature
up to temperatures much higher than the vapor�liquid LJ critical tem-
perature. Agrawal and Kofke [12] provided the following semiempirical fit
of the melting line:

P+
SFE=;&5�4(A+B;+C;2) exp(&D;1�2) (13)

where P+
SFE is the melting pressure P+ and

;=
1

T + (14)

The parameters of Eq. (13) are given in Table I [12].
Equation (13) is an EAR that corresponds both to the solid�liquid

equilibrium and to the solid�supercritical fluid equilibrium. Equation (13)
is not valid for the LJ solid�vapor equilibrium that takes place at tem-
peratures lower than the LJ triple-point temperature. The range of Eq. (13)
is 0.00365�;�1.456, which corresponds to the (wide) T + range 0.686813
�T +�273.973. At a given value of T +, the pressure of LJ solid�dense-
fluid equilibrium can be computed using Eq. (13). The resulting value of

Table I. Parameters in Eq. (13)

A 16.89
B &7.19
C &3.028
D 0.4759
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P+ can then be introduced into Eq. (8) to calculate the dense fluid \+

value. The \+ values obtained in this way, for a range of values of T +,
should be equal to the values of \+

fluid, SFE reported by Agrawal and Kofke
[12]. Figure 1 shows such a comparison. The solid line corresponds to
calculated values of \+

fluid, SFE , while the squares correspond to the LJ fluid
density data of Agrawal and Kofke [12]. From this figure it is clear that
there is a very good agreement between Ref. 8 and Ref. 12. Figure 1 also
shows the LJ data for the saturated solid and for the LJ fluid under condi-
tions of vapor�liquid equilibrium. The horizontal and vertical simple
dashed lines and the solid line define the limits of applicability of Eq. (6).
The two horizontal compound-dashed lines and the solid line define the

Fig. 1. Temperature�density phase diagram for the Lennard�Jones
(LJ) fluid. Solid line: highest \+ given by the PVE�hBH LJ equation of
state, Eq. (8), at solid�fluid equilibrium P+ [Eq. (13)]. (_) LJ solid
density data at solid�fluid equilibrium [12]; (g) LJ fluid density data
at solid�fluid equilibrium [12]; (m) PVE�hBH LJ EOS VLE liquid den-
sity calculated by Mecke et al. [9]; (q) PVE�hBH LJ EOS VLE vapor
density calculated by Mecke et al. [9]; (+) LJ critical point according
to Eqs. (9) and (11).
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limits of applicability of Eq (8). The range of the PVE�hBH LJ EOS com-
pletely contains the range of the RP viscosity EAR.

In summary, the equations presented in this section make it possible
to analytically calculate the LJ viscosity '+ at a given temperature T + and
pressure P+, paying close attention to the ranges of applicability of the
viscosity and pressure LJ-EARs.

3. THE MODIFIED LENNARD�JONES VISCOSITY EQUATION

The future development of the present work will require calculations
of properties of real fluids based on LJ properties. Real-fluid conditions of
temperature and pressure can make the required LJ computations fall out-
side the range of applicability of Eqs. (6) and (8). Hence, for such cases,
proper extrapolation schemes will have to be set for computing LJ densities
and viscosities. Equation (6), coupled with the original RP set of param-
eters bji and |i , gives a relatively complex viscous behavior at a low den-
sity and low temperature: a minimum appears for viscosity as a function of
density. Such behavior complicates the setting of robust extrapolation
schemes to be used at low temperatures. On the other hand, the effect is
not quantitatively important. Hence, we modified slightly the model set by
Eq. (6). The new form for the viscosity dependence on temperature and
density is

'+='+
0 exp _ :

4

i=2

:
6

j=1

bji
(\+) i

(T +) ( j&1)& (15)

where '+
0 is given by Eq. (7), as in the original RP model. The difference

between Eq. (6) and Eq. (15) is that in Eq. (15) all terms corresponding to
i=1 have been removed; i.e., all terms linear in \+ have been eliminated.
This imposes the flatness of the '+-vs-\+ curve at \+=0. The values of
the bji parameters to be used in Eq. (15) are different from the original RP
values. Table II presents the new set of bji parameters. We fitted the bji

Table II. Values for the Parameters of Eq. (15) Obtained in this Work

j i bji j i bji j i bji

1 2 0.7607120 1 3 0.4221662 1 4 &0.6411574
2 2 8.1770068 2 3 1.7296571 2 4 0.2811374
3 2 2.5445750 3 3 &14.372592 3 4 &5.1536547
4 2 &0.0532996 4 3 &9.3141867 4 4 26.873939
5 2 1.6436829 5 3 5.2107990 5 4 &15.182439
6 2 &1.2500496 6 3 0.9588608 6 4 1.7614285
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parameters of Eq. (15) forcing the absence of minima for viscosity as a
function of density and forcing the fulfillment of some suitable restrictions.
This is acceptable for engineering purposes. We provide the details in
Appendix B.

Now, our LJ viscosity EAR is defined by Eqs. (15) and (7), by the
original RP |i parameters, and by the parameters reported in Table II. The
temperature range of applicability is 0.8�T +�4. The range for \+ is
from 0 to the minimum between 1 and the density of the dense LJ fluid in
equilibrium with the LJ solid (\+

fluid, SFE), computed as described in the
previous section. The new set of equations and parameters will be our basic
model for the results presented below and for the future continuation of the
present work.

Appendix B provides information on the quantitative performance of
Eq. (15), used with the parameters reported in Table II.

4. RESULTS: QUALITATIVE ASSESSMENT

Figure 2 shows, on the viscosity�pressure plane, the effect of combin-
ing the viscosity�temperature�density EAR, Eq. (15)�Table II, with the
pressure�temperature�density EAR, Eq. (8), for the LJ fluid. For chosen

Fig. 2. Viscosity vs pressure for the Lennard�Jones fluid, as represented by
Eqs. (15) and (7) coupled with Table II parameters and Eq. (8).
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values of temperature T + and density \+, the viscosity and the pressure
are obtained from Eqs. (15) and (8), respectively, and plotted. For a given
isotherm the computations are performed from zero density up to a high
enough density (which is equal to, at most, the fluid density at SFE,
\+

fluid, SFE). The plot shows three isotherms. A region of negative pressure for
the subcritical isotherm is the consequence of having used Eq. (8), which,
in this respect, behaves as simpler analytical PVT EOSs. The critical
isotherm shows a flat region where small changes in pressure produce
important changes in viscosity. On the other hand, at very high tem-
peratures, the LJ viscosity is much less sensitive to pressure. From Fig. 2
it is clear that the set of equations (15)�(8) can basically represent the
viscosity of subcritical vapors and liquids, and of near-critical or supercriti-
cal fluids, over the whole pressure (density) range. The shape of the sub-
critical isotherm is a consequence in part of the restrictions described in
Appendix B. If the viscosity had been allowed to have a minimum with
respect to density in the low-density region, a more complicated shape for
subcritical isotherms would have been obtained.

From Eq. (5) it can be shown that

'+='+
0

'
'0

(16)

where '0 is the value of ' at zero density.
Also, from Eq. (3), we write

P+=PrP+
c (17)

where P+
c is a constant [Eq. (10)] and Pr is the practical reduced pressure,

defined as

Pr=
P
Pc

(18)

A chosen value of Pr sets a value for P+ through Eq. (17). Using Eqs.
(B1), (17), (7), and (15), with the parameters in Table II, and Eqs. (8) and
(16), the plot in Fig. 3 can be generated. Figure 3 depicts the ratio of
viscosity over zero-density viscosity ('�'0) as a function of the reduced
pressure Pr for the LJ fluid for different isotherms. Figure 3 agrees well
with Fig. 1.3.2 in the classical book by Bird et al. [13].
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Fig. 3. Ratio of viscosity to zero-density viscosity ('�'0) as a function
of the reduced pressure Pr for the Lennard�Jones fluid.

From Eq. (5), for a LJ fluid having = and _ independent of tem-
perature, it can be shown that

'+='+
c

'
'c

(19)

where 'c is the viscosity at the critical point, and the ratio '�'c is the
practical reduced viscosity. '+

c is the critical value of '+, calculated from
Eqs. (9), (11), and (15) with the parameters in Table II. The result is

'+
c =0.269409 (20)

It should be mentioned that viscosity models which, as the present one, do
not account for any critical enhancement effect give a finite value for the
critical viscosity. Actually, the viscosity diverges at the critical point (see,
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e.g., Table C2 in Ref. 7), and the incorporation of such an effect requires
a special modeling treatment [7]. Watson et al. [7] distinguished between
normal viscosity and actual viscosity. The normal viscosity is equal to the
actual viscosity under any condition except within a small region around
the critical point. Reported ``experimental'' finite values for the critical
viscosity should be regarded as values defined empirically by extrapolating
the behavior of the normal viscosity outside the critical region smoothly
into the critical region [7].

Figure 4 shows the reduced viscosity '�'c as a function of the reduced
temperature Tr at a number of values for the reduced pressure Pr . This
figure is in good agreement with Fig. 1.3.1 of Bird et al. [13]. Figure 4 was
generated as Fig. 3 but using Eqs. (19) and (20) instead of Eq. (16). The
density values corresponding to Figs. 3 and 4 never exceeded the limits of
applicability of Eq. (15).

Figures 1.3.1 and 1.3.2 of Bird et al. [13] represent two independent
analyses of a large number of experimental data. On the other hand, no

Fig. 4. Practical reduced viscosity as a function of the reduced temperature Tr for the
Lennard�Jones fluid.
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single real-fluid viscosity data point was used to generate the wide-ranging
Figs. 3 and 4. The remarkable agreement between these figures and the
figures in Ref. 13 is proof of the realism of the LJ fluid.

5. RESULTS: QUANTITATIVE ASSESSMENT

To assess more completely the potential of using the LJ analytical
representation studied here as a basis for describing the viscosities of real
fluids, we now concentrate on the quantitative performance of the model,
by comparing model predictions against viscosity data for simple real
fluids. To that end, we first need to set a criterion to assign numerical
values to = and _ for a given real fluid. The choice we made in this work
is as follows. We write Eqs. (2) and (3) at the critical point. For that, we
have to introduce the critical values of the dimensionless LJ variables given
by Eqs. (9) and (10). Hence,

T +
c =1.3396=

}Tc

=
(21)

P+
c =0.1405=

Pc_3

=
(22)

We compute the values of = and _ from the values of the experimental criti-
cal temperature Tc and of the experimental critical pressure Pc , by solving
the system of Eqs. (21) and (22). In this way, the experimental critical tem-
perature and pressure will be exactly reproduced by the LJ PVE�hBH
model [8], Eq. (8).

The advantage of this choice is that the unique behavior that takes
place at the critical point, i.e., a high density-sensitivity with small changes
in pressure, will be recovered by the model at a temperature equal to the
experimental critical temperature.

Since even for simple fluids the true intermolecular potential can be
much more complicated than the LJ function, the computed values of = and
_ have the meaning of effective LJ parameters compatible with the
experimental values of the critical temperature and pressure.

We compared predicted viscosities of simple pure fluids against the
data available in the compilation by Stephan and Lucas [14]. The only
input experimental information used was the critical temperature, critical
pressure, and molecular weight, which were also taken from Ref. 14. The
parameters used in Eq. (15) were those in Table II. Table III provides a
numerical calculation example.
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Table III. Sample Viscosity Prediction for Oxygen at 100 K and 10 bar

Input data

Compound

MW
(g } mol&1)

[14]
Tc (K)
[14]

Pc (bar)
[14] T (K) P (bar)

Oxygen 31.999 155 50.4 100 10

Calculated variables

=�} (K)
[Eq. (21)]

_ (A1 )
[Eq. (22)]

T+

[Eq. (2)]

\+
fluid, SFE at T+

[Eqs. (13)
and (8)]

'+
0

[Eq. (7)]
P+

[Eq. (3)]

115.71 3.54 0.8642581 0.8966233 0.0970133 0.027877

Phase A

Type
\+

A

[Eq. (8)]
'+

A

[Eq. (15)a]
'0 (+Pa } s)
[Eq. (5)]

'A (+Pa } s)
[Eq. (5)]

Experimental
'A (+Pa } s)

[14]

LIQ 0.7727073 1.9083063 7.1141776 139.9
(Prediction

error:
&7.20)

150.7

Phase B

Type
\+

B

[Eq. (8)]
'+

B

[Eq. (15)]a
'0 (+Pa } s)
[Eq. (5)]

'B (+Pa } s)
[Eq. (5)]

VAP 0.0480563 0.0999625 7.1141776 7.33

a Used with the parameters in Table II.

Table IV shows the viscosity prediction results arranged according to
compound and phase type (liquid, vapor, or supercritical fluid). In the
calculations, the range of applicability of Eq. (15) was never exceeded for
either density or temperature. Therefore, for about 2000 points available in
Ref. 14, for some of the compounds in Table IV, it was not possible to
compute viscosities. This issue will be the matter of future work. Results are
shown for a total of 12,182 points, within the range of Eq. (15).

The results in Table IV are true predictions; i.e., the model does not
use as input any single experimental real-fluid viscosity point or any
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adjustable parameter obtained from experimental viscosities. The only
input experimental information was the critical temperature and the critical
pressure. An average error of the order of 100 should be considered low
for a true prediction of viscosities over a wide range of conditions. Accord-
ing to this criterion, it can be seen that for simple fluids such as N2 , O2 ,
F2 , Ar, Kr, and Xe, the average errors are low. Average errors are also low
for more complex fluids such as ethylene, propylene, carbon monoxide,
carbon dioxide, methane, and ethane. For even more complex compounds,
errors are often low for vapors and supercritical fluids. For instance, for
supercritical bromotrifluoromethane, the average error is only 60 for 380
points, and for supercritical n-octane, the error is 100 for 134 points. For
complex molecules, such as n-octane, n-octene, and i-butane, in the liquid
state, the average error is large, often of the order of 300. Despite the
latter figure, we conclude, from Table IV, that it is promising to use the
present approach as a basis for the viscosity modeling of real fluids, due to
the low average errors obtained for simple fluids and for relatively complex
fluids in supercritical and vapor states, in a purely predictive way. We
stress that, at the stage of development here reported, the model is not
intended to be used for the quantitative modeling of viscosities of complex
real fluids.

The differentiation between components with regard to model perfor-
mance is more evident for the liquid state. From Table IV, the average
error for liquid viscosity is minimum for methane, oxygen, nitrogen,
ethane, and fluorine, in that order. These are the types of molecules for
which good results are expected by an LJ representation. Liquid propylene,
n-heptene, and argon come next, with practically the same average error
but with a smaller maximum error for argon. Argon is normally regarded
as an LJ-like fluid. The higher error for liquid argon viscosity with respect
to, e.g., liquid methane, may be due to several reasons. Some of them may
be the effect of high-density many-body forces, which are not accounted
for by the LJ intermolecular potential, accuracy differences between both
viscosity databases or between the critical coordinates used to set the
values of = and _, and fortuitous cancellations of errors. Table IV shows
higher errors for the liquid viscosity of H2 and neon. This is not surprising,
since H2 and neon are quantum fluids for which the classical mechanics
approach of molecular dynamics breaks down at high enough densities
and low enough temperatures [15]. Table IV also shows that the liquid
viscosity error increases roughly with molecular complexity for the aliphatic
hydrocarbons.

For comparison purposes, we repeated the calculations corresponding
to Table IV using Eq. (6) with the original RP set of parameters bji and |i .
The results were very similar to those in Table IV. This is not surprising

843Lennard�Jones Equivalent Analytical Relationships for Viscosities
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since, as reported in Appendix B, the error with respect to MD LJ
viscosities is similar for both models, (Eq. (15)�Table II and Eq. (6),
coupled with the original RP set of parameters bji); their main difference is
the way in which the Eq. (7) zero-density viscosity limit is approached
(mainly at low temperatures). For the reasons we stated in the first
paragraph in Section 3 and because of the tight control on the viscous
qualitative behavior associated with Eq. (15)�Table II, we will use the
model Eq. (15)�Table II for future development of the present modeling
approach.

Figure 5 illustrates the model performance for methane, showing
predicted and experimental viscosities as a function of pressure, at different
temperatures. It can be seen that the predictions of the model match the
experimental data very well. The intersection pressure between the 200 K
isotherm and the 520 K isotherm is also properly described. Figure 6 shows
viscosities as a function of pressure for n-octane. The model predictions
here give relatively high errors for the liquid viscosity. Despite this fact, the
model properly follows the experimentally observed qualitative trends
reproducing the order-of-magnitude changes in viscosity. Note that the
pressure and temperature ranges in Figs. 5 and 6 are wide. Despite the fact
that neither methane nor n-octane is an LJ fluid, Figs. 5 and 6 suggest that
it would be reasonable to base the modeling of the viscosities of these fluids

Fig. 5. Viscosity vs pressure for methane for different isotherms. Solid lines:
Lennard�Jones model predictions using Eq. (15)�Table II. q,_, and +: experimental
data [14].
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Fig. 6. Viscosity vs pressure for n-octane for different isotherms. Solid lines:
Lennard�Jones model predictions using Eq. (15)�Table II. g, q, and _: experi-
mental data [14].

on the viscosities of the LJ fluid, with LJ parameters consistent with the
experimental pure-compound critical temperature and critical pressure.

As is clear from Eqs. (15), (7), and (8), and as illustrated by Figs. 3
and 4, an LJ fluid is itself a corresponding-states fluid. This means, for
instance, that two LJ fluids differing in their values of = and _ will behave
according to the curves in Figs. 3 and 4. On the other hand, the calcula-
tions leading to Table IV assumed that real fluids behave as LJ fluids.
Therefore, the values of viscosity calculated to generate Table IV match the
curves in Figs. 3 and 4. Hence, Table IV should be seen as the result of the
application of a corresponding-states model where the reference fluid is an
LJ fluid. The definition of the model is completed with a specific recipe to
compute the values of = and _. According to that recipe, the only pieces of
input information required to calculate viscosities are the critical tempera-
ture, critical pressure, and molecular weight. From Table IV, the present
LJ-based corresponding-states model has obvious limitations. The future
development of the present work will concentrate on removing those
limitations.

6. CONCLUSIONS

In the present work, we studied an analytical representation of the
relation among pressure, temperature, density, and viscosity for the LJ

847Lennard�Jones Equivalent Analytical Relationships for Viscosities



fluid. We clearly identified its range of applicability and set convenient
equations and restrictions for its parameterization. The resulting qualitative
trends, over a wide range of conditions, agreed well with those of real
fluids. Predictions for pure compounds were performed. Considering that
they used only the experimental critical temperature and pressure as input
information, error values that should be regarded as low were obtained for
compounds such as N2 , O2 , F2 , Ar, Kr, Xe, ethylene, propylene, carbon
monoxide, carbon dioxide, methane, and ethane, in the gaseous and dense
states. For more complex compounds, errors were often low for vapors and
supercritical fluids. For complex liquids, errors were relatively high, but the
qualitative trends were properly described. The model was used in a truly
predictive way, i.e., no adjustable parameters coming from experimental
viscosities were used, and not a single viscosity data point was used as
model input. Hence, we conclude that using the viscosity of LJ fluids, over
wide ranges of pressure and temperature, as a basis for the viscosity model-
ing of real fluids is promising. In the future, suitable modifications will be
introduced to describe the viscous behavior of complex fluids better.

APPENDIX A: THE KOLAFA�NEZBEDA LJ EOS

The PVE�hBH LJ EOS of Kolafa and Nezbeda (KN) [8] is the
following:

z=
P+

\+T+= fKN(\+, T+) (8)

where

fKN(\+, T+)=zHS+zVIR+zRES (A1)

with

zHS=
1+{+{2&2�3{3(1+{)

(1&{)3 (A2)

{=
?\+d 3

hBH

6
(A3)

dhBH=:
i

Cd, i (T+) i�2+Cd, ln ln(T+) (A4)

zVIR=2B2, hBH\+ w1&2#(\+)2x exp w&#(\+)2x (A5)

2B2, hBH=:
i

CVIR, i (T+) i�2 (A6)

zRES=:
i

:
j

jCij (T+)(i�2&1) (\+) j (A7)
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Table AI. Coefficients for Eqs. (A4) to (A6)

Equation (A4)

i Cd, i

&2 0.011117524
&1 &0.076383859

0 1.080142248
1 0.000693129

ln &0.063920968

Equation (A5)

# 1.92907278

Equation (A6)

i CVIR, i

&7 &0.58544978
&6 0.43102052
&5 0.87361369
&4 &4.13749995
&3 2.90616279
&2 &7.02181962

0 0.02459877

The values of the constants for Eqs. (A4) to (A7) are given in Tables AI
and AII.

APPENDIX B: MODIFICATION OF THE LENNARD�JONES
VISCOSITY ANALYTICAL REPRESENTATION

Figure B1 shows two LJ supercritical isotherms computed using Eq. (6)
coupled with the original RP set of parameters bji and |i . It depicts the
following viscous behavior.

(a) At a constant temperature, viscosity increases with density;

(b) At zero density, viscosity increases with temperature. In contrast,
at high densities, viscosity decreases with temperature;

(c) At zero density, the viscosity is less at T+=1.8 than at T+=4.
At T+=1.8, the viscosity increases with density more rapidly
than the viscosity at T+=4. Hence, the isotherms intersect each
other at a high enough density;

849Lennard�Jones Equivalent Analytical Relationships for Viscosities



Table AII. Coefficients for Eq. (A7)

i j Cij

0 2 2.01546797
0 3 &28.17881636
0 4 28.28313847
0 5 &10.42402873

&1 2 &19.58371655
&1 3 75.62340289
&1 4 &120.70586598
&1 5 93.92740328
&1 6 &27.37737354

&2 2 29.34470520
&2 3 &112.35356937
&2 4 170.64908980
&2 5 &123.06669187
&2 6 34.42288969

&4 2 &13.37031968
&4 3 65.38059570
&4 4 &115.09233113
&4 5 88.91973082
&4 6 &25.62099890

(d) At a constant temperature, the viscosity curves are flat at low
densities and steeper at high densities, i.e., the slope of '+ vs \+

at a constant temperature increases with density.

The viscous behavior in Fig. B1 is in essential agreement with that of real
fluids. However, the previous list of statements is biased to some extent by
the scale of Fig. B1 and by the temperature values chosen.

Let us look at a lower-temperature isotherm. Figure B2 shows the
original MD RP LJ viscosity data for T+=0.8, together with the corre-
sponding '+-vs-\+ curve computed at T+=0.8 using Eq. (6) with the
original RP set of parameters bji and |i . It can be seen, for both the data
and the curve, that there is a minimum in viscosity in the low-density
region. It can also be seen that the zero-density limit is approached with a
notably negative '+-vs-\+ slope. Most of the MD data shown in Fig. B2
actually fall within the two-phase region, and hence they correspond to a
metastable LJ fluid. According to Rowley and Painter [5], ``Simulations
were performed in the two-phase region only to provide continuity of states
between vapor and liquid densities in anticipation of correlating the data
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Fig. B1. Lennard�Jones viscosity '+ as a function of density \+ for
two supercritical isotherms. The isotherms were computed using Eq. (6)
coupled with the original RP set of parameters bji and |i .

into polynomial equations. Values in the two-phase region have no other
significance.'' Hence, the justification for the minimum in Fig. B2 is weak.
By producing viscosity values in the metastable region, the authors
probably intended to avoid unphysical oscillations in the polynomial fitting
function [Eq. (6)]. It should be noted that Eq. (6) represents the LJ
viscosity as a continuous function of density, at any given temperature.
This means that within the (subcritical) two-phase region, Eq. (6) provides
viscosity values of a hypothetically homogeneous equilibrium LJ fluid or of
a metastable homogeneous LJ fluid. This has clear advantages as discussed
by Vesovic et al. [17]. Despite the weak justification for the minimum in
Fig. B2, homogeneous real fluids can have a viscous behavior qualitatively
similar to that in Fig. B2. For real fluids, the viscosity-vs-density slope at
zero density is in general different from zero. It can change sign from
positive to negative as the temperature is reduced [18]. At subcritical tem-
peratures, the sign is normally negative. In such a case ``the viscosity along
an isotherm should first decrease in the vapor phase and subsequently
increase with increasing density'' [6]. A minimum may or may not occur,
depending on the location of the two-phase boundary [6].
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Fig. B2. Lennard�Jones viscosity '+ as a function of density \+ at T+=0.8.
Solid line: computed using Eq. (6) coupled with the original RP set of
parameters bji and |i . Vertical dashed line: fluid density at solid�fluid equi-
librium. (+) MD RP LJ data [5]. The height of the plus symbols corresponds
to the uncertainties reported by Rowley and Painter [5].

For an LJ fluid having = and _ independent of temperature, it can be
shown, from Eq. (2), that

T+=TrT+
c (B1)

where T+
c is a constant [Eq. (9)] and Tr is the practical reduced tem-

perature, defined as

Tr=
T
Tc

(B2)

where Tc is the critical temperature. A chosen value of Tr automatically
sets a value for T+ through Eq. (B1).

Consider the product (\c �'0)(�'��\)0 , where \c is the critical density
and subscript 0 stands for the zero-density limit. (�'��\)0 is the derivative
of viscosity with respect to density at zero density, i.e., the initial slope for
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Fig. B3. Dimensionless zero-density viscosity-vs-density slope as a function of prac-
tical reduced temperature. Solid line: Eq. (6), with the original RP set of parameters
bji and |i , at zero density, coupled with Eqs. (7) and (11). Experimental data: ethane
[23]; benzene and methanol [21]; p-xylene [24]. Experimental critical densities were
obtained from Ref. 25.

the viscosity dependence with respect to density. For a chosen value of Tr ,
the product (\c �'0)(�'��\)0 can be computed using Eqs. (B1), (6), (7), and
(11). The dimensionless product (\c �'0)(�'��\)0 can be calculated with the
model without having to specify values for = and _.

Figure B3 shows the product (\c �'0)(�'��\)0 as a function of reduced
temperature both for the LJ model corresponding to Eq. (6) with the
original RP set of parameters bji and |i and for real fluids (experimental
values). Figure B3 shows that the model gives always a negative zero-den-
sity viscosity-vs-density slope throughout the temperature range of Eq. (6).
For reduced temperatures higher than unity, the model slope value is very
close to zero. For real fluids, it is shown in Fig. B3 that the initial slope can
be negative or positive, depending on the temperature range.

The nonzero viscosity-vs-density slope observed at zero density for
real fluids is a minor effect. For instance, for propane [6] the appearance
of low-density minima at subcritical temperatures is at most a 10 effect.
This number is 1.80 for some refrigerants [19, 20], 30 for ammonia
[18], and 30 for water [7]. On the other hand, the minimum in Fig. B2
corresponds roughly to a 300 decrease in viscosity with respect to the
zero-density value. Such an overestimation of the minimum probably
comes from having used MD simulation data corresponding to a
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metastable LJ fluid. Additionally, for real fluids, the magnitude of the
viscosity-vs-density slope at low densities is in most cases much smaller
than the slope at high density.

As stated in the text, we foresee the need to set proper extrapolation
schemes for computing reference LJ viscosities under conditions falling
outside the range of applicability of Eqs. (6) and (8), during the future
development of the present model. The relatively involved behavior shown
in Fig. B2 complicates the setting of robust extrapolation schemes. On the
other hand, the minimum-viscosity effect is small for real fluids. Hence, we
decided to replace Eq. (6) by Eq. (15), which forces the viscosity-vs-density
slope to be zero at zero density, and to impose on the general LJ adjustable
parameters of Eq. (15) other restrictions consistent with statements (a) to
(d) above.

We screened out, from the MD LJ data set used as input for the refit-
ting process, the three RP MD LJ viscosity data clearly responsible for the
minimum shown in Fig. B2. The three removed data correspond to
T+=0.8 and to the following values of \+: 0.05, 0.1, and 0.15. Note that
for the refitting process, we considered as valid the '+

0 values calculated
with Eq. (7).

In the following we present in detail the simplifying restrictions
imposed on the fitted parameters of Eq. (15). The restrictions stem from
statements (a) to (d) above, which arose from Fig. B1.

The flatness of the '+-vs-\+ curve at \+=0 corresponds to

\�'+

�\++0

=0 (B3)

where the subscript 0 implies that the partial derivative of Eq. (B3) is
evaluated at zero density. It can be shown that Eq. (15) of the text satisfies
Eq. (B3) at any temperature T+. The reason is that the argument of the
exponential function in Eq. (15) has no constant or linear terms with
respect to the density \+. We used Eq. (15) to fit the parameters reported
in Table II and in all further calculations. Due to Eq. (15), the number of
adjustable parameters is now less than the number of parameters of the
original Rowley and Painter [5] fit of Eq. (6).

The monotonic increase in viscosity with density at a constant tem-
perature, adopted as the basic reference behavior, is expressed by

�'+

�\+>0 for \+>0 (B4)
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The increase in the '+-vs-\+ slope with density is set by

�(�'+��\+)
�\+ >0 for \+�0 (B5)

The faster increase in viscosity with density that takes place at lower tem-
peratures implies that, at a given density (different from zero), the slope
�'+��\+ has to decrease with temperature, i.e.,

�(�'+��\+)
�T+ <0 for \+>0 (B6)

We used inequalities (B4) to (B6) for fitting the parameters of Eq. (15).
The objective function was based on the relative errors with respect to the
RP MD LJ viscosity data. Rowley and Painter [5] have not reported any
use of restrictions such as Eqs. (B4) to (B6) for their original fitting of the
coefficients of Eq. (6) of the text.

Note that the restriction (B4) is not set at zero density because Eq.
(15) implies a zero slope at zero density. The inequality (B5) has to be met
even at zero density. At zero density, the inequality (B6) does not apply:
since Eq. (15) implies a zero slope at zero density, and at any temperature,
the derivative �(�'+��\+)��T+ equals zero at zero density.

Compliance with the previous restrictions ensures the absence of
problematic loops in the two-phase region, thus securing a smooth path
from the slowly varying low-density viscosity values to the dramatic
viscosity rise in the dense region. This issue has been discussed by Vogel
et al. [6]. The previous restrictions imply that ('+&'+

0 )-vs-\+ isotherms
will all merge as the density tends to zero, while at high densities, they will
be fully stratified.

Table II presents the set of parameters for Eq. (15). They produce an
average absolute relative deviation of 6.10 with respect to the RP MD LJ
viscosity data (168 accepted points). The bias is &0.770. These values are
similar to those reported for the original RP parameters (171 points) [5].

The parameters in Table II are such that the inequalities (B4) to (B6)
are satisfied under all temperature�density conditions of the MD RP LJ
viscosity data. We also tested the absence of violations to the restrictions
in Eqs. (B4) to (B6) for more than 12,000 regularly spaced points in a sec-
tion of the temperature�density plane defined by the ranges 0.8�T +�4
and 0�\+�1.

Equation (B3) sets the low-density viscosity-vs-density slope to be
zero. This is acceptable for our modeling purposes. However, the reader
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should bear in mind that, to get the zero-density viscosity '0 for a real fluid
from experimental information, it is of utmost importance to determine the
value of the low-density viscosity-vs-density slope [21], which is normally
different from zero. The real-fluid viscosity '0 is then obtained through
extrapolation to the limit of zero density; i.e., '0 is not an ``experimentally
accessible quantity'' [6]. Forcing the zero-density viscosity-vs-density slope
to be zero, as set by Eq. (B3), implies that the model will predict a second
viscosity virial coefficient, B' [21], equal to zero. This would not be
acceptable had the goal been to represent well B' . Our goals do not include
the description of B' . A previous work where a zero value of B' was also set
is that by Younglove and Ely [22], for the case of propane [6].

Equation (15) coupled with the set of constants in Table II is consistent
with the vast majority of the RP LJ viscosity data. With regard to real fluids,
these constants give a qualitative behavior simpler than that observed.
However, they provide a reference viscosity description with well-defined
qualitative trends, grasping the essential known viscous behavior of fluids.
In this way, the user can keep control on the expected model behavior.
Corrections can potentially be added to this reference model to account for
more complex phenomena, such as some real-fluid abnormal phenomenologi-
cal behavior. For instance, the tabulated values of viscosity for dense water
[7] show a minimum in viscosity as a function of density, for the metastable
liquid at 0%C and at atmospheric pressure.
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NOMENCLATURE

AAD0 Average absolute-value percentage relative deviation
B' Second viscosity virial coefficient
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k Boltzmann constant
LIQ Liquid
m Mass of one molecule
Max AD0 Maximum absolute-value percentage relative deviation
N Number of molecules
NA Avogadro's number
NP Number of data points
P Absolute pressure
Pc Critical pressure
Pr Practical reduced pressure
P+

SFE LJ melting P+

PVT Pressure�volume�temperature
r Intermolecular distance
SCF Supercritical fluid
SFE Solid�fluid equilibrium
T Absolute temperature
Tc Critical temperature
Tr Practical reduced temperature
u Potential energy
V System volume
VAP Vapor
VLE Vapor�liquid equilibrium
z Compressibility factor

Greek Letters

= Depth of the LJ potential well
' (Newtonian shear) viscosity
'0 Viscosity at zero density
'c (Normal) critical viscosity
'exp Experimental viscosity
'pred Predicted viscosity
\+

fluid, SFE Dimensionless density of a dense LJ fluid in equilibrium
with an LJ solid

\ Amount-of-substance density (as, e.g., mol } cm&3)
\c Critical amount-of-substance density (as, e.g., mol } cm&3)
_ LJ separation distance at zero energy
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